Specifications - 2024.2 English

Vitis Libraries

Release Date
2024-11-29
Version
2024.2 English

The DATAFLOW directive is applied to the top function. You can specify the individual sub-function implementations using a configuration class derived from the following basic class by redefining the appropriate class member:

template <int RowsColsA, typename InputType, typename OutputType>
struct qrInverseTraits {
    typedef float InternalType;
    typedef qrfTraits QRF_CONFIG;
    typedef backSubstituteTraits<RowsColsA, InternalType, InternalType> BACK_SUB_CONFIG;
    typedef matrixMultiplyTraits<NoTranspose,
                                 NoTranspose,
                                 RowsColsA,
                                 RowsColsA,
                                 RowsColsA,
                                 RowsColsA,
                                 InternalType,
                                 OutputType>
        MULTIPLIER_CONFIG;
};

The configuration class is supplied to the xf::solver::qrInverse function as a template paramter as follows. The sub-functions are executed sequentially: QRF, back substitution, and matrix multiply. The implementation selected for these sub-functions determines the resource utilization and function throughput/latency of the Inverse function.

template <int RowsColsA,
          typename InputType,
          typename OutputType,
          typename QRInverseTraits = qrInverseTraits<RowsColsA, InputType, OutputType> >
void qrInverse(hls::stream<InputType>& matrixAStrm, hls::stream<OutputType>& matrixInverseAStrm, int& A_singular) {
#pragma HLS DATAFLOW
    // Define intermediate buffers
    hls::stream<typename QRInverseTraits::InternalType> matrixQStrm;
#pragma HLS STREAM variable = matrixQStrm depth = 16
    hls::stream<typename QRInverseTraits::InternalType> matrixRStrm;
#pragma HLS STREAM variable = matrixRStrm depth = 16
    hls::stream<typename QRInverseTraits::InternalType> matrixInverseRStrm;
#pragma HLS STREAM variable = matrixInverseRStrm depth = 16

    // Run QR factorization, get upper-triangular result in R, orthogonal/unitary matrix Q
    const bool TRANSPOSED_Q = true; // Q is produced in transpose form such that Q*A = R
    qrf<TRANSPOSED_Q, RowsColsA, RowsColsA, InputType, typename QRInverseTraits::InternalType, typename QRInverseTraits::QRF_CONFIG>(matrixAStrm, matrixQStrm, matrixRStrm);

     // Run back-substitution to compute R^-1
     backSubstitute<RowsColsA, typename QRInverseTraits::InternalType, typename QRInverseTraits::InternalType, typename QRInverseTraits::BACK_SUB_CONFIG>(matrixRStrm, matrixInverseRStrm, A_singular);

     // A^-1 = R^-1*Qt
     matrixMultiply<NoTranspose, NoTranspose, RowsColsA, RowsColsA, RowsColsA, RowsColsA, RowsColsA, RowsColsA, typename QRInverseTraits::InternalType, OutputType, typename QRInverseTraits::MULTIPLIER_CONFIG>(matrixInverseRStrm, matrixQStrm, matrixInverseAStrm);
 }