Host Software - 2024.1 English

Vitis Tutorials: AI Engine

Document ID
XD100
Release Date
2024-06-19
Version
2024.1 English

Estimated time: less than 1 minute

make all

or, follow steps 1 and 2 as follows:

Step 1: Compile Host Software

Following is an example of how to compile the ../Module_02_aie/Work_x4_x100/ps/c_rts/aie_control_xrt.cpp file.

XFLIB_DIR_REL_PATH :=$(DSPLIB_VITIS)/data_mover
XFLIB_DIR := $(shell readlink -f $(XFLIB_DIR_REL_PATH))
VITIS_PYTHON3 := python3

$(XILINX_VITIS)/gnu/aarch64/lin/aarch64-linux/bin/aarch64-linux-gnu-g++ -Wall -c -g \
                      -fmessage-length=0  \
                      -std=c++17 \
                      -Wno-unknown-pragmas
                      -Wno-unused-label
                      -Wno-int-to-pointer-cast
                      --sysroot=$(SDKTARGETSYSROOT)
                      -I$(SDKTARGETSYSROOT)/usr/include/xrt
                      -I$(SDKTARGETSYSROOT)/usr/include
                      -I./
                      -I../Module_02_aie
                      -I../Module_02_aie/src
                      -I$XILINX_VITIS/aietools/include
                      -I$XILINX_VITIS/include
                      -I$(XFLIB_DIR)/ext/xcl2
                      -I$(XFLIB_DIR)/utils/L1/include
                      -o ./build/aie_control_xrt.o
                      ../Module_02_aie/build/Work_x4_x100/ps/c_rts/aie_control_xrt.cpp

The same compilation options were used to compile the host/nbody.cpp, host/log.cpp, host/main_xrt.cpp, and host/main_animate.cpp files.

Host Software

After the full hardware design is implemented, the next step is to focus on the host software that enables the entire design. In the AMD Vitis™ core development kit, host code is written in C++ language using the Xilinx® runtime (XRT) API. The XRT native API is described on the XRT site.

This module compiles the following host applications and custom APIs:

  • host/nbody.cpp - NbodySimulator API that implements an NBody Simulator in C++

  • host/log.cpp - Logger API that logs messages to a file

  • host/main_xrt.cpp - Host application that compares AI Engine output to golden data (functional check)

  • host/main_animate.cpp - Host application that runs the design for multiple iterations and saves position data to a file to post-process and create an animation.gif later.

NBodySimulator API

The NBodySimulator API is a C++ implementation of an N-Body Simulator which runs on the native A72 processor. It also writes the position data to an animation_data.txt file which you will post-process later to create an animation.gif.

Logger API

The Logger API is used to save logging messages from the host applications to the run.log file. The host application can set the log level of which messages are written to the run.log and which messages are shown on the console during execution. By default, the log level is set to LMESSAGE, meaning all messages will be written to run.log. The cout log level is set to LINFO, meaning any messages set to LINFO will be also displayed on the output console during execution.

Log Levels:

  • LMESSAGE

  • LINFO

  • LERROR

  • LNONE

Host Applications

The host/main_xrt.cpp host application is compiled into the build/ps_app.exe executable. This host application reads in the m2s_i.txt and input_j.txt files that initalize the mm2s_mp PL kernel’s ibuff and jbuff DDR buffer inputs. This host application starts the PL kernels and the AI Engine graph and waits for one iteration of data to flow through the design. Once the s2mm_mp PL kernel completes, this host application compares the AI Engine output to the golden output files (s2m_golden_i_k0.txt, s2m_golden_i_k1.txt, s2m_golden_i_k2.txt, and s2m_golden_i_k3.txt files). If there are any data mismatches, then the TEST FAILED, else the TEST PASSED. If you provide the --profile command line input, this host application also calculates the execution times for the C++ N-Body Simulator and the AI Engine N-Body Simulator for comparison.

The host/main_animate.cpp host application is compiled into the build/ps_animate.exe executable. This host application does the following:

  • uses the NBodySimulator API to generate initial data (input_i and input_j)

  • save the position data (x,y,and z) for all 12,800 particles to the animation_data.txt

  • feeds input data through the AI Engine design

  • captures the output data from the s2mm_mp kernel

  • reconstructs the output data into a new input_i and new input_j arrays

  • feeds the new input_i and input_j back into the AI Engine design and computes another timesteps

The host application repeats these actions for 300 timesteps. You can provide the --timesteps <num_timesteps> command line input to specify how many timesteps (iterations) the design runs for.

The following is the general execution flow for the host applications.

alt text

References

Next Steps

After compiling the host software, you are ready to create the sd_card.img and run the design on hardware in the next module, Module 06 - SD Card and Hardware Run.

Copyright © 2020–2024 Advanced Micro Devices, Inc

Terms and Conditions