Performance Table - 2024.1 English

Vitis Tutorials: AI Engine

Document ID
XD100
Release Date
2024-06-19
Version
2024.1 English

This table summarizes IO/Compute balance for all supported input data types and matrix sizes:

  • Mat A Type: number of bits of Matrix A data type. bf16is 16 bit wide.

  • Mat B Type: number of bits of Matrix A data type. bf16is 16 bit wide.

  • Compute (MAC/cyc): number of parallel multiplication-accumulations that can be performed by the vector processor of the AI Engine ML

  • M: number of rows of matrix A

  • K: number of columns of matrix A = number of rows of matrix B

  • N: number of columns of matrix B

  • Mat A Size B): number of bytes used to encode matrix A

  • Mat B Size (B): number of bytes used to encode matrix B

  • Load Mat A (cyc): number of cycles necessary to load Matrix A

  • Load Mat B (cyc): number of cycles necessary to load Matrix B

  • Compute (cyc): Number of cycles necessary to compute the matrix multiplication

  • Compute (%): Efficiency of the vector processor usage compared to the max of IO and compute burden

  • IO A (%): Efficiency of the matrix A load compared to the the max IO and compute burden

  • IO B (%): Efficiency of the matrix B load compared to the the max IO and compute burden

Mat A Type Mat B Type Compute (MAC/cyc) M K N Mat A Size (B) Mat B Size (B) Load Mat A (cyc) Load Mat B (cyc) Compute (cyc) Compute (%) IO A % IO B %
8b 4b 512 4 16 8 64 64 2 2 1 0.5 1 1
8b 4b 512 8 16 8 128 64 4 2 2 0.5 1 0.5
8b 4b 512 4 32 8 128 128 4 4 2 0.5 1 1
8b 8b 256 4 8 4 32 32 1 1 0.5 0.5 1 1
8b 8b 256 4 16 4 64 64 2 2 1 0.5 1 1
8b 8b 256 8 8 4 64 32 2 1 1 0.5 1 0.5
8b 8b 256 2 8 8 16 64 0.5 2 0.5 0.25 0.25 1
8b 8b 256 4 8 8 32 64 1 2 1 0.5 0.5 1
8b 8b 256 2 16 8 32 128 1 4 1 0.25 0.25 1
8b 8b 256 4 16 8 64 128 2 4 2 0.5 0.5 1
16b 8b 128 4 4 4 32 16 1 0.5 0.5 0.5 1 0.5
16b 8b 128 8 4 4 64 16 2 0.5 1 0.5 1 0.25
16b 8b 128 4 8 4 64 32 2 1 1 0.5 1 0.5
16b 8b 128 4 4 8 32 32 1 1 1 1 1 1
8b 16b 128 4 4 8 16 64 0.5 2 1 0.5 0.25 1
8b 16b 128 4 4 4 16 32 0.5 1 0.5 0.5 0.5 1
16b 16b 64 4 4 4 32 32 1 1 1 1 1 1
16b 16b 64 2 4 8 16 64 0.5 2 1 0.5 0.25 1
16b 16b 64 4 4 8 32 64 1 2 2 1 0.5 1
16b 16b 64 4 2 8 16 32 0.5 1 1 1 0.5 1
32b 16b 32 2 4 8 32 64 1 2 2 1 0.5 1
32b 16b 32 4 4 4 64 32 2 1 2 1 1 0.5
32b 16b 32 4 2 4 32 16 1 0.5 1 1 1 0.5
16b 32b 32 2 4 8 16 128 0.5 4 2 0.5 0.125 1
16b 32b 32 4 4 4 32 64 1 2 2 1 0.5 1
32b 32b 16 4 2 4 32 32 1 1 2 1 0.5 0.5
32b 32b 16 4 4 4 64 64 2 2 4 1 0.5 0.5
32b 32b 16 8 2 4 64 32 2 1 4 1 0.5 0.25
bf16 bf16 128 4 8 4 64 64 2 2 1 0.5 1 1

Support

GitHub issues will be used for tracking requests and bugs. For questions, go to support.xilinx.com.

Copyright © 2023 Advanced Micro Devices, Inc.

Terms and Conditions