Model Support
The following models are supported by this version of the Vitis AI Library.
No. | Neural Network | VEK280 | V70 | Application |
---|---|---|---|---|
1 | inception_v1_tf | Y | Y | Image Classification |
2 | inception_v3_tf | Y | Y | |
3 | inception_v4_2016_09_09_tf | Y | Y | |
4 | mobilenet_v1_0_25_128_tf | Y | Y | |
5 | mobilenet_v1_1_0_224_tf | Y | Y | |
6 | mobilenet_v2_1_0_224_tf | Y | Y | |
7 | mobilenet_v2_1_4_224_tf | Y | Y | |
8 | resnet_v1_101_tf | Y | Y | |
9 | resnet_v1_152_tf | Y | Y | |
10 | resnet_v1_50_tf | Y | Y | |
11 | vgg_16_tf | Y | Y | |
12 | vgg_19_tf | Y | Y | |
13 | ssd_mobilenet_v1_coco_tf | Y | Y | Object Detection |
14 | ssd_mobilenet_v2_coco_tf | Y | Y | |
15 | yolov3_voc_tf | Y | Y | |
16 | mlperf_ssd_resnet34_tf | Y | Y | |
17 | resnet50_pt | Y | Y | Image Classification |
18 | squeezenet_pt | Y | Y | |
19 | inception_v3_pt | Y | Y | |
20 | pointpillars_kitti_12000_0_pt pointpillars_kitti_12000_1_pt |
Y | Y | Point Cloud |
21 | MLPerf_resnet50_v1.5_tf | Y | Y | Image Classification |
22 | RefineDet-Medical_EDD_tf | Y | Y | Medical Detection |
23 | resnet_v2_50_tf | Y | Y | Image Classification |
24 | resnet_v2_101_tf | Y | Y | |
25 | resnet_v2_152_tf | Y | Y | |
26 | resnet50_tf2 | Y | Y | |
27 | inception_v3_tf2 | Y | Y | |
28 | efficientNet-edgetpu-S_tf | Y | Y | |
29 | efficientNet-edgetpu-M_tf | Y | Y | |
30 | efficientNet-edgetpu-L_tf | Y | Y | |
31 | pointpillars_nuscenes_40000_64_0_pt pointpillars_nuscenes_40000_64_1_pt |
Y | Y | 3D object detection |
32 | FADNet_0_pt FADNet_1_pt FADNet_2_pt |
N/A | N/A | Depth Estimation |
33 | rcan_pruned_tf | Y | Y | Super Resolution |
34 | efficientnet-b0_tf2 | N/A | N/A | Classification |
35 | HardNet_MSeg_pt | Y | Y | Polyp Segmentation |
36 | ofa_resnet50_0_9B_pt | Y | Y | Classification |
37 | SESR_S_pt | Y | Y | Image Super-Resolution |
38 | ofa_depthwise_res50_pt | Y | Y | Classification |
39 | FADNet_pruned_0_pt FADNet_pruned_1_pt FADNet_pruned_2_pt |
N/A | N/A | Depth Estimation |
40 | PSMNet_pruned_0_pt PSMNet_pruned_1_pt PSMNet_pruned_2_pt |
N/A | N/A | |
41 | mobilenet_v3_small_1_0_tf2 | N/A | N/A | Classification |
42 | ssr_pt | Y | Y | Spectral Remove |
43 | chen_color_resnet18_pt | Y | Y | Classification |
44 | face_mask_detection_pt | Y | Y | Face mask Detection |
45 | ofa_rcan_latency_pt | Y | Y | Super Resolution |
46 | vehicle_make_resnet18_pt | Y | Y | Classification |
47 | vehicle_type_resnet18_pt | Y | Y | Classification |
48 | ofa_yolo_pt | Y | Y | Object Detection |
49 | ofa_yolo_pruned_0_30_pt | Y | Y | |
50 | ofa_yolo_pruned_0_50_pt | Y | Y | |
51 | efficientdet_d2_tf | N/A | N/A | |
52 | superpoint_tf | Y | N/A | SLAM |
53 | hfnet_tf | Y | N/A | SLAM |
54 | movenet_ntd_pt | Y | Y | Pose Estimation |
55 | yolov3_coco_416_tf2 | Y | Y | Object Detection |
56 | yolov4_leaky_416_tf | Y | Y | |
57 | yolov4_leaky_512_tf | Y | Y | |
58 | HRNet_pt | N/A | N/A | Segmentation |
59 | xilinxSR_pt | N/A | N/A | Super Resolution |
60 | yolov4_csp_pt | Y | Y | Object Detection |
61 | yolov5_nano_pt | Y | Y | |
62 | yolov5s6_pt | Y | Y | |
63 | yolov5_large_pt | Y | N/A | |
64 | yolox_nano_pt | Y | Y | |
65 | yolov6_pt | Y | Y | |
66 | 3D-Unet_pt | N/A | N/A | Medical Segmentation |
67 | FADNet_v2_0_pt FADNet_v2_1_pt FADNet_v2_2_pt |
Y | Y | Depth Estimation |
68 | FADNet_v2_pruned_0_pt FADNet_v2_pruned_1_pt FADNet_v2_pruned_2_pt | Y | N/A | |
69 | unet2d_tf2 | Y | Y | Segmentation |
70 | yolov5l_pt | Y | N/A | Object Detection |
71 | yolov5m_pt | Y | Y | |
72 | yolov7_pt | Y | Y | |
73 | yolov8m_pt | Y | Y | |
|