The Xilinx® Alveo™ U55C high performance compute card provides optimized acceleration for workloads in high performance computing (HPC), big data analytics and search, financial computing, computational storage and machine learning. In this release, the DPU is implemented in program logic for deep learning inference acceleration.
U55C Performance with 11PE300 MHz DPUCAHX8H-DWC
Refer to the following table for the throughput performance (in frames/sec or fps) for various neural network samples on U55C with DPUCAHX8H-DWC running at 11PE@300 MHz.
No | Neural Network | Input Size | GOPS | DPU Frequency (MHz) | Performance (fps) (Multiple thread) |
---|---|---|---|---|---|
1 | densebox_320_320 | 320x320 | 0.49 | 300 | 4922.83 |
2 | densebox_640_360 | 360x640 | 1.1 | 300 | 2205.46 |
3 | drunet_pt | 528x608 | 2.59 | 300 | 479.90 |
4 | ENet_cityscapes_pt | 512x1024 | 8.6 | 300 | 144.02 |
5 | face_landmark | 96x72 | 0.14 | 300 | 19902.40 |
6 | face-quality | 80x60 | 0.06 | 300 | 30667.30 |
7 | face-quality_pt | 80x60 | 0.06 | 300 | 30562.20 |
8 | facerec_resnet20 | 112x96 | 3.5 | 300 | 2500.45 |
9 | facerec-resnet20_mixed_pt | 112x96 | 3.5 | 300 | 2499.11 |
10 | facerec_resnet64 | 112x96 | 11 | 300 | 907.31 |
11 | facereid-large_pt | 96x96 | 0.5 | 300 | 15187.80 |
12 | facereid-small_pt | 80x80 | 0.09 | 300 | 33132.60 |
13 | FairMot_pt | 640x480 | 36 | 300 | 239.92 |
14 | fpn | 256x512 | 8.9 | 300 | 725.33 |
15 | FPN_Res18_Medical_segmentation | 320x320 | 45.3 | 300 | 182.27 |
16 | FPN-resnet18_covid19-seg_pt | 352x352 | 22.7 | 300 | 408.05 |
17 | inception_resnet_v2_tf | 299x299 | 26.4 | 300 | 301.68 |
18 | inception_v1 | 224x224 | 3.2 | 300 | 2135.29 |
19 | inception_v1_tf | 224x224 | 3 | 300 | 2214.22 |
20 | inception_v2 | 224x224 | 4 | 300 | 1731.11 |
21 | inception_v3 | 299x299 | 11.4 | 300 | 697.38 |
22 | inception_v3_pt | 299x299 | 5.7 | 300 | 697.54 |
23 | inception_v3_tf | 299x299 | 11.5 | 300 | 698.57 |
24 | inception_v3_tf2 | 299x299 | 11.5 | 300 | 714.44 |
25 | inception_v4 | 299x299 | 24.5 | 300 | 326.77 |
26 | inception_v4_2016_09_09_tf | 299x299 | 24.6 | 300 | 327.53 |
27 | medical_seg_cell_tf2 | 128x128 | 5.3 | 300 | 2021.76 |
28 | MLPerf_resnet50_v1.5_tf | 224x224 | 8.19 | 300 | 1015.18 |
29 | mlperf_ssd_resnet34_tf | 1200x1200 | 433 | 300 | 25.83 |
30 | mobilenet_1_0_224_tf2 | 224x224 | 1.1 | 350 | 5340.33 |
31 | mobilenet_v1_0_25_128_tf | 128x128 | 0.027 | 350 | 18874.90 |
32 | mobilenet_v1_0_5_160_tf | 160x160 | 0.15 | 350 | 12898.20 |
33 | mobilenet_v1_1_0_224_tf | 224x224 | 1.1 | 350 | 5325.89 |
34 | mobilenet_v2 | 224x224 | 0.6 | 350 | 5370.48 |
35 | multi_task | 288x512 | 14.8 | 300 | 536.58 |
36 | ofa_resnet50_0_9B_pt | 160x160 | 0.9 | 300 | 2942.50 |
37 | openpose_pruned_0_3 | 368x368 | 49.9 | 300 | 57.89 |
38 | person-orientation_pruned_558m_pt | 176x80 | 0.558 | 300 | 11906.10 |
39 | personreid-res18_pt | 176x80 | 1.1 | 300 | 7096.63 |
40 | personreid-res50_pt | 256x128 | 5.4 | 300 | 1637.65 |
41 | plate_detection | 320x320 | 0.49 | 300 | 7895.80 |
42 | plate_num | 96x288 | 1.75 | 300 | 2312.90 |
43 | pmg_pt | 224x224 | 2.28 | 300 | 1995.08 |
44 | pointpainting-nuscenes | 40000x64x16 | 112 | 300 | 21.28 |
pointpainting_nuscenes_40000_64_0_pt | |||||
pointpainting_nuscenes_40000_64_1_pt | |||||
45 | pointpillars_nuscenes | 40000x64x5 | 108 | 300 | 42.5002 |
pointpillars_nuscenes_40000_64_0_pt | |||||
pointpillars_nuscenes_40000_64_1_pt | |||||
46 | refinedet_baseline | 480x360 | 123 | 300 | 94.32 |
47 | RefineDet-Medical_EDD_tf | 320x320 | 9.8 | 300 | 797.82 |
48 | refinedet_pruned_0_8 | 360x480 | 25 | 300 | 331.45 |
49 | refinedet_pruned_0_92 | 360x480 | 10.1 | 300 | 717.55 |
50 | refinedet_pruned_0_96 | 360x480 | 5.1 | 300 | 1011.15 |
51 | refinedet_VOC_tf | 320x320 | 81.9 | 300 | 138.97 |
52 | reid | 80x160 | 0.95 | 300 | 7476.71 |
53 | resnet18 | 224x224 | 3.7 | 300 | 2609.77 |
54 | resnet50 | 224x224 | 7.7 | 300 | 1178.18 |
55 | resnet50_pt | 224x224 | 4.1 | 300 | 1015.14 |
56 | resnet50_tf2 | 224x224 | 7.7 | 300 | 1178.36 |
57 | resnet_v1_101_tf | 224x224 | 14.4 | 300 | 611.32 |
58 | resnet_v1_152_tf | 224x224 | 21.8 | 300 | 407.69 |
59 | resnet_v1_50_tf | 224x224 | 7 | 300 | 1178.59 |
60 | retinaface | 360x640 | 1.11 | 350 | 1764.23 |
61 | salsanext_pt | 64x2048 | 20.4 | 300 | 152.34 |
62 | salsanext_v2_pt | 64x2048 | 32 | 300 | 58.46 |
63 | SemanticFPN_cityscapes_pt | 256x512 | 10 | 300 | 782.05 |
64 | SemanticFPN_Mobilenetv2_pt | 512x1024 | 5.4 | 350 | 230.77 |
65 | semantic_seg_citys_tf2 | 512x1024 | 54 | 300 | 90.59 |
66 | SESR_S_pt | 360x640 | 7.48 | 300 | 290.95 |
67 | sp_net | 128x224 | 0.55 | 300 | 5669.09 |
68 | squeezenet | 227x227 | 0.76 | 300 | 6173.84 |
69 | squeezenet_pt | 224x224 | 0.82 | 300 | 6560.42 |
70 | ssd_adas_pruned_0_95 | 360x480 | 6.3 | 300 | 994.51 |
71 | ssdlite_mobilenet_v2_coco_tf | 300x300 | 1.5 | 350 | 2135.17 |
72 | ssd_mobilenet_v1_coco_tf | 300x300 | 2.5 | 350 | 2180.88 |
73 | ssd_mobilenet_v2 | 360x480 | 6.6 | 350 | 720.55 |
74 | ssd_mobilenet_v2_coco_tf | 300x300 | 3.8 | 350 | 1472.47 |
75 | ssd_pedestrian_pruned_0_97 | 360x360 | 5.9 | 300 | 904.75 |
76 | ssd_resnet_50_fpn_coco_tf | 640x640 | 178.4 | 300 | 59.37 |
77 | ssd_traffic_pruned_0_9 | 360x480 | 11.6 | 300 | 672.57 |
78 | tiny_yolov3_vmss | 416x416 | 5.46 | 300 | 1634.88 |
79 | tsd_yolox_pt | 640x640 | 73 | 300 | 132.59 |
80 | ultrafast_pt | 288x800 | 8.4 | 300 | 481.47 |
81 | unet_chaos-CT_pt | 512x512 | 23.3 | 300 | 138.36 |
82 | vgg_16_tf | 224x224 | 31 | 300 | 295.64 |
83 | vgg_19_tf | 224x224 | 39.3 | 300 | 246.94 |
84 | vpgnet_pruned_0_99 | 480x640 | 2.5 | 300 | 946.99 |
85 | yolov2_voc | 448x448 | 34 | 300 | 318.21 |
86 | yolov2_voc_pruned_0_66 | 448x448 | 11.6 | 300 | 779.56 |
87 | yolov2_voc_pruned_0_71 | 448x448 | 9.9 | 300 | 906.92 |
88 | yolov2_voc_pruned_0_77 | 448x448 | 7.8 | 300 | 1091.51 |
89 | yolov3_adas_pruned_0_9 | 256x512 | 5.5 | 300 | 1229.14 |
90 | yolov3_bdd | 288x512 | 53.7 | 300 | 147.58 |
91 | yolov3_voc | 416x416 | 65.4 | 300 | 152.95 |
92 | yolov3_voc_tf | 416x416 | 65.6 | 300 | 152.84 |
93 | yolov4_leaky_spp_m | 416x416 | 60.1 | 300 | 156.64 |
94 | yolov4_leaky_spp_m_pruned_0_36 | 416x416 | 38.2 | 300 | 166.85 |