If you have scripts to evaluate float models, like the models in Xilinx Model Zoo, you can replace the float model file with the quantized model for evaluation. To support the customized quantize layers, the vitis_quantize module should be imported, for example:
from tensorflow_model_optimization.quantization.keras import vitis_quantize quantized_model = tf.keras.models.load_model('quantized_model.h5')
After that, evaluate the quantized model just as the float model, for example:
quantized_model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics= keras.metrics.SparseTopKCategoricalAccuracy())
quantized_model.evaluate(eval_dataset)