This section contains information regarding the features and updates of the Vitis™ AI Library 1.2 release.
Key Features And Enhancements
This AI Library release includes the following key features and enhancements:
- New Cloud Board Support
- Alveo™ U50LV and U280 cards are now supported in this release.
- New Model Libraries
- The following new model libraries are supported.
- PyTorch Model Support
- Three PyTorch models are supported.
- Support for new Caffe Models
- Six new Caffe models are supported.
Changes
- The installation mode of the target for the Edge is changed and the RPM format package is used.
- meta.json file in the model has been deprecated.
Compatibility
The Vitis™ AI Library 1.2 is tested with the following images.
- xilinx-zcu102-dpu-v2020.1-v1.2.0.img.gz
- xilinx-zcu104-dpu-v2020.1-v1.2.0.img.gz
Model Support
The following models are supported by this version of the Vitis™ AI Library.
No. | Neural Network | ZCU102/ZCU104 | U50/U50LV/U280 | Application |
---|---|---|---|---|
1 | inception_resnet_v2_tf | Y | Y | Image Classification |
2 | inception_v1_tf | Y | Y | |
3 | inception_v3_tf | Y | Y | |
4 | inception_v4_2016_09_09_tf | Y | Y | |
5 | mobilenet_v1_0_25_128_tf | Y | N/A | |
6 | mobilenet_v1_0_5_160_tf | Y | N/A | |
7 | mobilenet_v1_1_0_224_tf | Y | N/A | |
8 | mobilenet_v2_1_0_224_tf | Y | N/A | |
9 | mobilenet_v2_1_4_224_tf | Y | N/A | |
10 | resnet_v1_101_tf | Y | Y | |
11 | resnet_v1_152_tf | Y | Y | |
12 | resnet_v1_50_tf | Y | Y | |
13 | vgg_16_tf | Y | Y | |
14 | vgg_19_tf | Y | Y | |
15 | ssd_mobilenet_v1_coco_tf | Y | N/A | Object Detection |
16 | ssd_mobilenet_v2_coco_tf | Y | N/A | |
17 | ssd_resnet_50_fpn_coco_tf | Y | Y | |
18 | yolov3_voc_tf | Y | Y | |
19 | mlperf_ssd_resnet34_tf | Y | N/A | |
20 | resnet50 | Y | Y | Image Classification |
21 | resnet18 | Y | Y | |
22 | inception_v1 | Y | Y | |
23 | inception_v2 | Y | Y | |
24 | inception_v3 | Y | Y | |
25 | inception_v4 | Y | Y | |
26 | mobilenet_v2 | Y | N/A | |
27 | squeezenet | Y | Y | |
28 | ssd_pedestrian_pruned_0_97 | Y | Y | ADAS Pedestrian Detection |
29 | ssd_traffic_pruned_0_9 | Y | Y | Traffic Detection |
30 | ssd_adas_pruned_0_95 | Y | Y | ADAS Vehicle Detection |
31 | ssd_mobilenet_v2 | Y | N/A | Object Detection |
32 | refinedet_pruned_0_8 | Y | Y | |
33 | refinedet_pruned_0_92 | Y | Y | |
34 | refinedet_pruned_0_96 | Y | Y | |
35 | vpgnet_pruned_0_99 | Y | Y | ADAS Lane Detection |
36 | fpn | Y | Y | ADAS Segmentation |
37 | sp_net | Y | Y | Pose Estimation |
38 | openpose_pruned_0_3 | Y | Y | |
39 | densebox_320_320 | Y | Y | Face Detection |
40 | densebox_640_360 | Y | Y | |
41 | face_landmark | Y | Y | Face Detection and Recognition |
42 | reid | Y | Y | Object tracking |
43 | multi_task | Y | Y | ADAS |
44 | yolov3_adas_pruned_0_9 | Y | Y | Object Detection |
45 | yolov3_voc | Y | Y | |
46 | yolov3_bdd | Y | Y | |
47 | yolov2_voc | Y | Y | |
48 | yolov2_voc_pruned_0_66 | Y | Y | |
49 | yolov2_voc_pruned_0_71 | Y | Y | |
50 | yolov2_voc_pruned_0_77 | Y | Y | |
51 | facerec_resnet20 | Y | Y | Face Recognition |
52 | facerec_resnet64 | Y | Y | |
53 | plate_detection | Y | Y | Plate Recognition |
54 | plate_recognition | Y | Y | |
55 | FPN_Res18_Medical_segmentation | Y | Y | Medical Segmentation |
56 | refinedet_baseline | Y | Y | Object Detection |
57 | resnet50_pt | N/A | Y | Image Classification |
58 | squeezenet_pt | N/A | Y | |
59 | inception_v3_pt | N/A | Y | |
|
Device Support
The following platforms and EVBs are supported by the Vitis™ AI Library 1.2.
Platform | EVB | Version |
---|---|---|
Zynq UltraScale+ MPSoC ZU9EG | Xilinx ZCU102 | V1.1 |
Zynq® UltraScale+™ MPSoC ZU7EV | Xilinx ZCU104 | V1.0 |
Accelerator Cards |
---|
Xilinx Alveo U50 |
Xilinx Alveo U50LV |
Xilinx Alveo U280 |
Limitations
- Some neural networks with mobilenet as the backbone are not supported on the Alveo U50, U50LV, and U280 cards.
- PyTorch models are not supported for Edge devices.
- Due to limitations of the Docker environment, Multi-task demos cannot run in the DRM mode on Cloud devices.