- Prepare floating-point frozen model and dataset.
Table 1. Input Files for vai_q_tensorflow No. Name Description 1 frozen_graph Frozen Resnet-50 model. 2 calib_images Before launching quantization for ResNet-50, prepare the calibration dataset. You can download 100 to 1000 images of ImageNet dataset from http://academictorrents.com/collection/imagenet-2012 or http://www.image-net.org/download.php
and then change the calibration dataset path in the input_fn.
3 input_fn A python function to read images in calibration dataset and complete the pre-processing instructions. Input files for vai_q_tensorflow is shown in the above table. The frozen model can be downloaded from Xilinx modelzoo (https://github.com/Xilinx/Vitis-AI/tree/master/AI-Model-Zoo). Scripts to evaluate the models can also be found in modelzoo.
input_fn
is a python function to read images in calibration dataset and complete the pre-processing instructions. An example of input_fn.py is shown below. A class namedData_loader
is implemented to load image and do pre-processing. Here the pre-processing includescenter_crop
andmean extraction
.calib_image_list
is an image list file for calibration andcalib_image_dir
is the directory containing the calibration image files. Functioncalib_input
is the required input function for quantizer.import tensorflow as tf import os _R_MEAN = 123.68 _G_MEAN = 116.78 _B_MEAN = 103.94 class Data_loader(object): def __init__(self, out_height, out_width, smallest_side=256): self._sess = tf.Session() self._out_height = out_height self._out_width = out_width self._smallest_side = smallest_side self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) self._image_pl = tf.placeholder(tf.float32, shape=(None, None, 3)) self._resized_image = self._aspect_preserving_resize(self._image_pl, self._smallest_side) def _center_crop(self, image): image_height, image_width = image.shape[:2] offset_height = (image_height - self._out_height) // 2 offset_width = (image_width - self._out_width) // 2 image = image[offset_height:offset_height + self._out_height, offset_width:offset_width + self._out_width, :] return image def _smallest_size_at_least(self, height, width, smallest_side): """Computes new shape with the smallest side equal to `smallest_side`. Computes new shape with the smallest side equal to `smallest_side` while preserving the original aspect ratio. Args: height: an int32 scalar tensor indicating the current height. width: an int32 scalar tensor indicating the current width. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: new_height: an int32 scalar tensor indicating the new height. new_width: and int32 scalar tensor indicating the new width. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) height = tf.to_float(height) width = tf.to_float(width) smallest_side = tf.to_float(smallest_side) scale = tf.cond(tf.greater(height, width), lambda: smallest_side / width, lambda: smallest_side / height) new_height = tf.to_int32(tf.rint(height * scale)) new_width = tf.to_int32(tf.rint(width * scale)) return new_height, new_width def _aspect_preserving_resize(self, image, smallest_side): """Resize images preserving the original aspect ratio. Args: image: A 3-D image `Tensor`. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: resized_image: A 3-D tensor containing the resized image. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) shape = tf.shape(image) height = shape[0] width = shape[1] new_height, new_width = self._smallest_size_at_least(height, width, smallest_side) image = tf.expand_dims(image, 0) resized_image = tf.image.resize_bilinear(image, [new_height, new_width], align_corners=False) resized_image = tf.squeeze(resized_image) #resized_image.set_shape([None, None, 3]) return resized_image def preprocess(self, image): assert image is not None, "image cannot be None" resized_image = self._sess.run(self._resized_image, feed_dict={self._image_pl: image}) image_crop = self._center_crop(resized_image) image = image_crop - [_R_MEAN, _G_MEAN, _B_MEAN] return image def load_image(self, img_path): assert os.path.exists(img_path), img_path + ' doesnot exists!' image_data = tf.gfile.GFile(img_path, 'rb').read() image = self._sess.run(self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[-1] == 3 return image calib_image_dir = "./imagenet_images/" calib_image_list = "./imagenet_calib.txt" calib_batch_size = 50 input_height = 224 input_width = 224 def calib_input(iter): images = [] data_loader = Data_loader(input_height, input_width) line = open(calib_image_list).readlines() for index in range(0, calib_batch_size): curline = line[iter * calib_batch_size + index] calib_image_name = curline.strip() filename = os.path.join(calib_image_dir, calib_image_name) image = data_loader.load_image(filename) image = data_loader.preprocess(image) images.append(image.tolist()) return {"input": images}
The calibration image list filecalib_image_list
looks like this:ILSVRC2012_val_00000001.JPEG ILSVRC2012_val_00000002.JPEG ILSVRC2012_val_00000003.JPEG ILSVRC2012_val_00000004.JPEG ...
- Activate Tensorflow running
environment.
conda activate vitis-ai-tensorflow
- Run vai_q_tensorflow to quantize the TensorFlow frozen
models.
vai_q_tensorflow quantize \ --input_frozen_graph resnet_v1_50_inference.pb \ --input_nodes input \ --input_shapes ?,224,224,3 \ --output_nodes resnet_v1_50/predictions/Reshape_1 \ --input_fn input_fn.calib_input \ --method 1 \ --gpu 0 \ --calib_iter 20 \ --output_dir ./quantize_results \
Here
--input_fn
is set to be"input_fn.calib_input"
.input_fn
is the name of python script andcalib_input
is the function name in input_fn.py. The script may take several minutes to finish. Once the quantization is done, quantization summary will display like this:INFO: Checking Float Graph... INFO: Float Graph Check Done. 2020-03-07 06:46:35.567522: W tensorflow/contrib/decent_q/utils/quantize_utils.cc:538] Convert mean node resnet_v1_50/pool5 to AvgPool 2020-03-07 06:46:35.572301: W tensorflow/contrib/decent_q/utils/quantize_utils.cc:628] Scale output of avg_pool node resnet_v1_50/pool5 to simulate DPU. INFO: Calibrating for 20 iterations... 100% (20 of 20) |#####################################################################################################| Elapsed Time: 0:21:11 Time: 0:21:11 INFO: Calibration Done. INFO: Generating Deploy Model... [DEPLOY WARNING] Node resnet_v1_50/predictions/Reshape_1(Type: Reshape) is not quantized and cannot be deployed to DPU,because it has unquantized input node: resnet_v1_50/predictions/Softmax. Please deploy it on CPU. INFO: Deploy Model Generated. ********************* Quantization Summary ********************* INFO: Output: quantize_eval_model: ./quantize_results/quantize_eval_model.pb deploy_model: ./quantize_results/deploy_model.pb
Two files will be generated in quantize_results directory. The deploy_model.pb could be fed to VAI compiler for the following compilation processes targeting hardware platform DPUv2. The quantize_eval_model.pb can be used for model evaluation and dump on GPU or CPU. It is also the input file for compilation processes targeting hardware platform DPUv3.
Use the following the steps to run vai_q_tensorflow.