vai_q_pytorch Usage - 1.2 English

Vitis AI User Guide (UG1414)

Document ID
UG1414
Release Date
2020-07-21
Version
1.2 English

This section introduces the usage of execution tools and APIs to implement quantization and generated model to be deployed on target hardware. The APIs are in the module pytorch_binding/pytorch_nndct/apis/quant_api.py are:

def torch_quantizer(quant_mode,
                        module,
                        input_args,
                        state_dict_file,
                        output_dir,
                        bitwidth_w,
                        bitwidth_a)

Function torch_quantizer will create a quantizer.

Argumentss:

  • quant_mode: An integer that indicates which quantization mode the process is using. 0 for turning off quantization. 1 for calibration of quantization. 2 for evaluation of quantized model.
  • Module: Float module to be quantized.
  • Input_args: input tensor with the same shape as real input of float module to be quantized, but the values can be random number.
  • State_dict_file: Float module pretrained parameters file. If float module has read parameters in, the parameter is not needed to be set.
  • Output_dir: Directory for quantization result and intermediate files. Default is “quantize_result”.
  • Bitwidth_w: Global weights and bias quantization bit width. Default is 8.
  • Bitwidth_a: Global activation quantization bit width. Default is 8.
def dump_xmodel(output_dir, deploy_check)

Function dump_xmodel will create deployed model.

Arguments:

  • Output_dir: Directory for quantizapyttion result and intermediate files. Default is “quantize_result”
  • Depoly_check: Flags to control dump of data for accuracy check. Default is False.