Fully pipelined complex multiplier using three DSP blocks.
Filename: cmult.v
//
// Complex Multiplier (pr+i.pi) = (ar+i.ai)*(br+i.bi)
// file: cmult.v
module cmult # (parameter AWIDTH = 16, BWIDTH = 18)
(
input clk,
input signed [AWIDTH-1:0] ar, ai,
input signed [BWIDTH-1:0] br, bi,
output signed [AWIDTH+BWIDTH:0] pr, pi
);
reg signed [AWIDTH-1:0] ai_d, ai_dd, ai_ddd, ai_dddd ;
reg signed [AWIDTH-1:0] ar_d, ar_dd, ar_ddd, ar_dddd ;
reg signed [BWIDTH-1:0] bi_d, bi_dd, bi_ddd, br_d, br_dd, br_ddd ;
reg signed [AWIDTH:0] addcommon ;
reg signed [BWIDTH:0] addr, addi ;
reg signed [AWIDTH+BWIDTH:0] mult0, multr, multi, pr_int, pi_int ;
reg signed [AWIDTH+BWIDTH:0] common, commonr1, commonr2 ;
always @(posedge clk)
begin
ar_d <= ar;
ar_dd <= ar_d;
ai_d <= ai;
ai_dd <= ai_d;
br_d <= br;
br_dd <= br_d;
br_ddd <= br_dd;
bi_d <= bi;
bi_dd <= bi_d;
bi_ddd <= bi_dd;
end
// Common factor (ar ai) x bi, shared for the calculations of the real and imaginary final products
//
always @(posedge clk)
begin
addcommon <= ar_d - ai_d;
mult0 <= addcommon * bi_dd;
common <= mult0;
end
// Real product
//
always @(posedge clk)
begin
ar_ddd <= ar_dd;
ar_dddd <= ar_ddd;
addr <= br_ddd - bi_ddd;
multr <= addr * ar_dddd;
commonr1 <= common;
pr_int <= multr + commonr1;
end
// Imaginary product
//
always @(posedge clk)
begin
ai_ddd <= ai_dd;
ai_dddd <= ai_ddd;
addi <= br_ddd + bi_ddd;
multi <= addi * ai_dddd;
commonr2 <= common;
pi_int <= multi + commonr2;
end
assign pr = pr_int;
assign pi = pi_int;
endmodule // cmult