RTL blocks are not supported inside the ADF graph. Communication between the
RTL blocks and the ADF graph requires PLIO interfaces. In the following example, interpolator
and classify
are
AI Engine kernels. The interpolator
AI Engine kernel streams data to a PL RTL block,
which, in turn, streams data back to the AI Engine
classify
kernel.
class clipped : public graph {
private:
kernel interpolator;
kernel classify;
public:
input_plio in;
output_plio out;
output_plio clip_in;
input_plio clip_out;
clipped() {
in = input_plio::create("DataIn1", plio_32_bits,"data/input.txt");
out = output_plio::create("DataOut1", plio_32_bits,"data/output.txt");
clip_out = input_plio::create("clip_out",plio_32_bits,"data/input1.txt");
clip_in = output_plio::create("clip_in", plio_32_bits,"data/output1.txt");
interpolator = kernel::create(fir_27t_sym_hb_2i);
classify = kernel::create(classifier);
connect(in.out[0], interpolator.in[0]);
connect(interpolator.out[0], clip_in.in[0]);
connect(clip_out.out[0], classify.in[0]);
connect(classify.out[0], out.in[0]);
std::vector<std::string> myheaders;
myheaders.push_back("include.h");
adf::headers(interpolator) = myheaders;
adf::headers(classify) = myheaders;
source(interpolator) = "kernels/interpolators/hb27_2i.cc";
source(classify) = "kernels/classifiers/classify.cc";
runtime<ratio>(interpolator) = 0.8;
runtime<ratio>(classify) = 0.8;
};
};
clip_in
and clip_out
are ports to and from the polar_clip
PL RTL kernel which is connected to the AI Engine
kernels in the graph. For example, the clip_in
port is the
output of the interpolator
AI Engine kernel that is connected to the input of
the polar_clip
RTL kernel. The clip_out
port is the input of the classify
AI Engine kernel and the output of the polar_clip
RTL kernel.
RTL Blocks and AI Engine-ML
The following example shows application code.
#include "graph.h"
clipped clipgraph;
#if defined(__AIESIM__ ) || defined(__X86SIM__)
int main(int argc, char ** argv) {
clipgraph.init();
clipgraph.run();
clipgraph.end();
return 0;
}
#endif
To make the aiesimulator
work, you must
create input test bench files related to the RTL kernel. data/output_interp.txt is the test bench input to the RTL kernel. The aiesimulator
generates the output file from the interpolator
AI Engine kernel. The data/input_classify.txt file contains data from the polar_clip
kernel which is input to the AI Engine
classify
kernel. Note that PLIO can have an optional
attribute, PL clock frequency, which is 100 for the polar_clip
.
RTL Blocks in Hardware Emulation and Hardware Flows
RTL kernels are fully supported in hardware emulation and hardware flows.
You need to add the RTL kernel as an nk
option and link the
interfaces with the sc
option, as shown in the following
code. If necessary, adjust any clock frequency using freqHz
. The following is an example of a Vitis
configuration file.
[connectivity]
nk=mm2s:1:mm2s
nk=s2mm:1:s2mm
nk=polar_clip:1:polar_clip
sc=mm2s.s:ai_engine_0.DataIn1
sc=ai_engine_0.clip_in:polar_clip.in_sample
sc=polar_clip.out_sample:ai_engine_0.clip_out
sc=ai_engine_0.DataOut1:s2mm.s
[clock]
freqHz=100000000:polar_clip.ap_clk
For more information on RTL kernels and the Vitis flow, see RTL Kernel Development in the Embedded Design Development Using Vitis (UG1701).
PL Kernels Inside AI Engine Graph
After system linking with AI Engine graph and PL Kernels, the system diagram of AI Engine graph and PL Kernels connections can be shown inside AI Engine graph view. Open the linker summary in the Vitis IDE with the following command:
vitis -a <USER_NAME>.xsa.link_summary