The following example takes two vectors with reals in rva
and imaginary in rvb
(with type aie::vector<int32,8>
) and creates a new complex vector, using
the offsets to interleave the values as required.
aie::vector<int32,8> rva,rvb;
auto rv=aie::interleave_zip(rva,rvb,1);
aie::vector<cint32,8> cv=aie::concat(rv.first.cast_to<cint32>(),rv.second.cast_to<cint32>());
The following example shows how to extract real and imaginary portion of a
vector cv
with type aie::vector<cint32,8>
.
aie::vector<cint32,8> cv;
aie::vector<int32,16> re_im=cv.cast_to<int32>();
aie::vector<int32,8> re=aie::filter_even(re_im,1);
aie::vector<int32,8> im=aie::filter_odd(re_im,1);
aie::broadcast
can be used to set every
element of a vector to a given value. The following example shows how to set all
eight elements in a vector to a constant value.
// set all elements to 100
aie::vector<int32,8> v1=aie::broadcast<int32,8>(100);
The following example shows how to use aie::broadcast
to set multiple values repeatedly in the vector.
alignas(aie::vector_decl_align) int16 init_data[16]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
// set 0 1 2 3 repeatedly into buff
aie::vector<int16,32> buff=aie::broadcast<cint32,8>(*(cint32*)init_data).cast_to<int16>();
The following example shows how to multiply each element in rva
by the first element in rvb
. This is efficient for a vector multiplied by constant value.
aie::vector<int32,8> rva,rvb;
aie::accum<acc80,8> acc = aie::mul(rva,rvb[0]);
The following examples show how to multiply each element in rva
by its corresponding element in rvb
.
aie::vector<int32,8> va,vb;
aie::accum<acc80,8> acc=aie::mul(va,vb);
The following examples show how to perform matrix multiplication for int8 x
int8 data types with mmul
intrinsic, assuming that
data storage is in row-major format.
// Z_{2x8} * X_{8x8} = A_{2x8}
aie::vector<int8,16> Z;
aie::vector<int8,64> X;
aie::mmul<2,8,8,int8,int8> m;
m.mul(Z,X);
// Z_{4x8} * X_{8x4} = A_{4x4}
aie::vector<int8,32> Z;
aie::vector<int8,32> X;
aie::mmul<4,8,4,int8,int8> m;
m.mul(Z,X);
For more information about vector lane permutations, refer to the AI Engine Intrinsics User Guide (UG1078).