The deep neural network operators and the associated parameters supported by the DPUCADF8H are in the following table.
| Operators | Parameters | Description |
|---|---|---|
| Convolution | Kernel Sizes | kernel_w: [1,
16] kernel_h: [1, 16] |
| Strides | stride_w: [1,
8] stride_h: [1, 8] |
|
| Padding | pad_w: [0,
15] pad_h: [0, 15] |
|
| Input Size | input_channel: [1, 8192] | |
| Output Size | Arbitrary | |
| Activation | ReLU, PReLU, Leaky ReLU, ReLU6 | |
| Dilated Convolution | Kernel Sizes | kernel_w: [1,
16] kernel_h: [1, 16] |
| Strides | stride_w:
[1] stride_h: [1] |
|
| Padding | pad_w: [0,
15] pad_h: [0, 15] |
|
| Input Size | input_channel: [1, 8192] | |
| Output Size | Arbitrary | |
| Activation | ReLU, PReLU, Leaky ReLU, ReLU6 | |
| Deconvolution | Kernel Sizes | kernel_w: [1,
16] kernel_h: [1, 16] |
| Strides | stride_w:1 stride_h: 1 |
|
| Padding | pad_w: [0,
15] pad_h: [0, 15] |
|
| Input Size | input_channel: [1, 8192] | |
| Output Size | Arbitrary | |
| Activation | ReLU, PReLU, Leaky ReLU, ReLU6 | |
| Full Connected | Input Size | input_channel: [1, 1048576] |
| Pooling | Kernel Sizes | kernel_w: [1,
16] kernel_h: [1, 16] |
| Strides | stride_w: [1,
8] stride_h: [1, 8] |
|
| Padding | pad_w: [0,
15] pad_h: [0, 15] |
|
| Input Size | Arbitrary | |
| Type | Max, Average | |
|
Elementwise-sum
|
Input Size | Arbitrary |
| Activation | ReLU, Leaky ReLU | |
| Data Reorganization | Kernel Sizes | kernel_w: [1, 16] |
| Strides | stride_w: [1, 8] | |
| Padding | pad_left: [0,
15] pad_right: [0, 15] |
|
| Input Size |
input_channel: [1, 32] input_w: [1, 3840]input_h: [1, 2160] |