The deep neural network operators and the associated parameters supported by the DPUCADF8H are in the following table.
Operators | Parameters | Description |
---|---|---|
Convolution | Kernel Sizes | kernel_w: [1,
16] kernel_h: [1, 16] |
Strides | stride_w: [1,
8] stride_h: [1, 8] |
|
Padding | pad_w: [0,
15] pad_h: [0, 15] |
|
Input Size | input_channel: [1, 8192] | |
Output Size | Arbitrary | |
Activation | ReLU, PReLU, Leaky ReLU, ReLU6 | |
Dilated Convolution | Kernel Sizes | kernel_w: [1,
16] kernel_h: [1, 16] |
Strides | stride_w:
[1] stride_h: [1] |
|
Padding | pad_w: [0,
15] pad_h: [0, 15] |
|
Input Size | input_channel: [1, 8192] | |
Output Size | Arbitrary | |
Activation | ReLU, PReLU, Leaky ReLU, ReLU6 | |
Deconvolution | Kernel Sizes | kernel_w: [1,
16] kernel_h: [1, 16] |
Strides | stride_w:1 stride_h: 1 |
|
Padding | pad_w: [0,
15] pad_h: [0, 15] |
|
Input Size | input_channel: [1, 8192] | |
Output Size | Arbitrary | |
Activation | ReLU, PReLU, Leaky ReLU, ReLU6 | |
Full Connected | Input Size | input_channel: [1, 1048576] |
Pooling | Kernel Sizes | kernel_w: [1,
16] kernel_h: [1, 16] |
Strides | stride_w: [1,
8] stride_h: [1, 8] |
|
Padding | pad_w: [0,
15] pad_h: [0, 15] |
|
Input Size | Arbitrary | |
Type | Max, Average | |
Elementwise-sum
|
Input Size | Arbitrary |
Activation | ReLU, Leaky ReLU | |
Data Reorganization | Kernel Sizes | kernel_w: [1, 16] |
Strides | stride_w: [1, 8] | |
Padding | pad_left: [0,
15] pad_right: [0, 15] |
|
Input Size |
input_channel: [1, 32] input_w: [1, 3840]input_h: [1, 2160] |