Letterbox - 2024.1 English

Vitis Libraries

Release Date
2024-08-06
Version
2024.1 English

The Letterbox algorithm is used for scaling input image to desired output size while preserving aspect ratio of original image. If required, zeroes are padded for preserving the aspect ratio post resize.

An application of letterbox is in the pre-processing block of machine learning pipelines used in image processing.

pp_image1

The following example demonstrates the Letterbox algorithm.

void letterbox_accel(ap_uint<INPUT_PTR_WIDTH>* img_inp,
                    ap_uint<OUTPUT_PTR_WIDTH>* img_out,
                    int rows_in,
                    int cols_in,
                    int rows_out,
                    int cols_out,
                    int insert_pad_value) {

            #pragma HLS INTERFACE m_axi     port=img_inp  offset=slave bundle=gmem1
            #pragma HLS INTERFACE m_axi     port=img_out  offset=slave bundle=gmem2
            #pragma HLS INTERFACE s_axilite port=rows_in
            #pragma HLS INTERFACE s_axilite port=cols_in
            #pragma HLS INTERFACE s_axilite port=rows_out
            #pragma HLS INTERFACE s_axilite port=cols_out
            #pragma HLS INTERFACE s_axilite port=insert_pad_value
            #pragma HLS INTERFACE s_axilite port=return


                    // Compute Resize output image size for Letterbox
                    float scale_height = (float)rows_out/(float)rows_in;
                    float scale_width = (float)cols_out/(float)cols_in;
                    int rows_out_resize, cols_out_resize;
                    if(scale_width<scale_height){
                            cols_out_resize = cols_out;
                            rows_out_resize = (int)((float)(rows_in*cols_out)/(float)cols_in);
                    }
                    else{
                            cols_out_resize = (int)((float)(cols_in*rows_out)/(float)rows_in);
                            rows_out_resize = rows_out;
                    }

                    xf::cv::Mat<TYPE, HEIGHT, WIDTH, NPC_T, XF_CV_DEPTH_IN_0> imgInput0(rows_in, cols_in);
                    xf::cv::Mat<TYPE, NEWHEIGHT, NEWWIDTH, NPC_T, XF_CV_DEPTH_OUT_1> out_mat_resize(rows_out_resize, cols_out_resize);
                    xf::cv::Mat<TYPE, NEWHEIGHT, NEWWIDTH, NPC_T, XF_CV_DEPTH_OUT_2> out_mat(rows_out, cols_out);

            #pragma HLS DATAFLOW

                    xf::cv::Array2xfMat<INPUT_PTR_WIDTH,XF_8UC3,HEIGHT, WIDTH, NPC_T, XF_CV_DEPTH_IN_0>  (img_inp, imgInput0);
                    xf::cv::resize<INTERPOLATION,TYPE,HEIGHT,WIDTH,NEWHEIGHT,NEWWIDTH,NPC_T, XF_USE_URAM, XF_CV_DEPTH_IN_0, XF_CV_DEPTH_OUT_1,MAXDOWNSCALE> (imgInput0, out_mat_resize);
                    xf::cv::insertBorder<TYPE, NEWHEIGHT, NEWWIDTH, NEWHEIGHT, NEWWIDTH, NPC_T, XF_CV_DEPTH_OUT_1, XF_CV_DEPTH_OUT_2>(out_mat_resize, out_mat, insert_pad_value);
                    xf::cv::xfMat2Array<OUTPUT_PTR_WIDTH, TYPE, NEWHEIGHT, NEWWIDTH, NPC_T, XF_CV_DEPTH_OUT_2>(out_mat, img_out);
                    return;
                    }// end kernel

The Letterbox example uses two hardware functions from the Vitis vision library. They are:

  • xf::cv::resize
  • xf::cv::insertBorder

In the given example, the source image is passed to the xf::cv::resize function. The output of that function is passed to the xf::cv::insertBorder module and the final output image are returned.

Insert Border API Syntax

template <
    int TYPE,
    int SRC_ROWS,
    int SRC_COLS,
    int DST_ROWS,
    int DST_COLS,
    int NPC,
        int XFCVDEPTH_IN = _XFCVDEPTH_DEFAULT,
int XFCVDEPTH_OUT = _XFCVDEPTH_DEFAULT
    >
void insertBorder (
    xf::cv::Mat <TYPE, SRC_ROWS, SRC_COLS, NPC, XFCVDEPTH_IN>& _src,
    xf::cv::Mat <TYPE, DST_ROWS, DST_COLS, NPC, XFCVDEPTH_OUT>& _dst,
    int insert_pad_val
    )


:start