Color Detection - 2024.1 English

Vitis Libraries

Release Date
2024-08-06
Version
2024.1 English

The Color Detection algorithm is basically used for color object tracking and object detection, based on the color of the object. The color based methods are very useful for object detection and segmentation, when the object and the background have a significant difference in color.

The Color Detection example uses four hardware functions from the Vitis vision library. They are:

  • xf::cv::BGR2HSV
  • xf::cv::colorthresholding
  • xf::cv::erode
  • xf::cv::dilate

In the Color Detection example, the color space of the original BGR image is converted into an HSV color space. Because HSV color space is the most suitable color space for color based image segmentation. Later, based on the H (hue), S (saturation) and V (value) values, apply the thresholding operation on the HSV image and return either 255 or 0. After thresholding the image, apply erode (morphological opening) and dilate (morphological opening) functions to reduce unnecessary white patches (noise) in the image. Here, the example uses two hardware instances of erode and dilate functions. The erode followed by dilate and once again applying dilate followed by erode.

The following example demonstrates the Color Detection algorithm.

    void color_detect(ap_uint<PTR_IN_WIDTH>* img_in,
              unsigned char* low_thresh,
              unsigned char* high_thresh,
              unsigned char* process_shape,
              ap_uint<PTR_OUT_WIDTH>* img_out,
              int rows,
              int cols) {

#pragma HLS INTERFACE m_axi      port=img_in        offset=slave  bundle=gmem0
#pragma HLS INTERFACE m_axi      port=low_thresh    offset=slave  bundle=gmem1
#pragma HLS INTERFACE s_axilite  port=low_thresh
#pragma HLS INTERFACE m_axi      port=high_thresh   offset=slave  bundle=gmem2
#pragma HLS INTERFACE s_axilite  port=high_thresh
#pragma HLS INTERFACE s_axilite  port=rows
#pragma HLS INTERFACE s_axilite  port=cols
#pragma HLS INTERFACE m_axi      port=process_shape offset=slave  bundle=gmem3
#pragma HLS INTERFACE s_axilite  port=process_shape
#pragma HLS INTERFACE m_axi      port=img_out       offset=slave  bundle=gmem4
#pragma HLS INTERFACE s_axilite  port=return

            xf::cv::Mat<IN_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_imgInput> imgInput(rows, cols);
            xf::cv::Mat<IN_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_rgb2hsv> rgb2hsv(rows, cols);
            xf::cv::Mat<OUT_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_imgHelper1> imgHelper1(rows, cols);
            xf::cv::Mat<OUT_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_imgHelper2> imgHelper2(rows, cols);
            xf::cv::Mat<OUT_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_imgHelper3> imgHelper3(rows, cols);
            xf::cv::Mat<OUT_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_imgHelper4> imgHelper4(rows, cols);
            xf::cv::Mat<OUT_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_imgOutput> imgOutput(rows, cols);

            // Copy the shape data:
            unsigned char _kernel[FILTER_SIZE * FILTER_SIZE];
            for (unsigned int i = 0; i < FILTER_SIZE * FILTER_SIZE; ++i) {

                    #pragma HLS PIPELINE
                    // clang-format on
                    _kernel[i] = process_shape[i];
            }

    #pragma HLS DATAFLOW
            // clang-format on
            // Retrieve xf::cv::Mat objects from img_in data:
            xf::cv::Array2xfMat<PTR_IN_WIDTH, IN_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_imgInput>(img_in, imgInput);

            // Convert RGBA to HSV:
            xf::cv::bgr2hsv<IN_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_imgInput, XF_CV_DEPTH_rgb2hsv>(imgInput, rgb2hsv);

            // Do the color thresholding:
            xf::cv::colorthresholding<IN_TYPE, OUT_TYPE, MAXCOLORS, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_rgb2hsv, XF_CV_DEPTH_imgHelper1>(rgb2hsv, imgHelper1, low_thresh,
                                                                                                                                                                     high_thresh);

            // Use erode and dilate to fully mark color areas:
            xf::cv::erode<XF_BORDER_CONSTANT, OUT_TYPE, HEIGHT, WIDTH, XF_KERNEL_SHAPE, FILTER_SIZE, FILTER_SIZE, ITERATIONS,
                                      NPC1, XF_CV_DEPTH_imgHelper1, XF_CV_DEPTH_imgHelper2>(imgHelper1, imgHelper2, _kernel);
            xf::cv::dilate<XF_BORDER_CONSTANT, OUT_TYPE, HEIGHT, WIDTH, XF_KERNEL_SHAPE, FILTER_SIZE, FILTER_SIZE, ITERATIONS,
                                       NPC1, XF_CV_DEPTH_imgHelper2, XF_CV_DEPTH_imgHelper3>(imgHelper2, imgHelper3, _kernel);
            xf::cv::dilate<XF_BORDER_CONSTANT, OUT_TYPE, HEIGHT, WIDTH, XF_KERNEL_SHAPE, FILTER_SIZE, FILTER_SIZE, ITERATIONS,
                                       NPC1, XF_CV_DEPTH_imgHelper3, XF_CV_DEPTH_imgHelper4>(imgHelper3, imgHelper4, _kernel);
            xf::cv::erode<XF_BORDER_CONSTANT, OUT_TYPE, HEIGHT, WIDTH, XF_KERNEL_SHAPE, FILTER_SIZE, FILTER_SIZE, ITERATIONS,
                                      NPC1, XF_CV_DEPTH_imgHelper4, XF_CV_DEPTH_imgOutput>(imgHelper4, imgOutput, _kernel);

            // Convert _dst xf::cv::Mat object to output array:
            xf::cv::xfMat2Array<PTR_OUT_WIDTH, OUT_TYPE, HEIGHT, WIDTH, NPC1, XF_CV_DEPTH_imgOutput>(imgOutput, img_out);

            return;

    } // End of kernel

In the given example, the source image is passed to the xf::cv::BGR2HSV function, the output of that function is passed to the xf::cv::colorthresholding module, the thresholded image is passed to the xf::cv::erode function and, the xf::cv::dilate functions and the final output image are returned.