Image Sensor Processing pipeline with GTM - 2024.1 English

Vitis Libraries

Release Date
2024-08-06
Version
2024.1 English

This ISP includes following blocks:

  • Black level correction: Black level leads to the whitening of image in dark region and perceived loss of overall contrast. The Blacklevelcorrection algorithm corrects the black and white levels of the overall image.
  • BPC (Bad pixel correction): An image sensor may have a certain number of defective/bad pixels that may be the result of manufacturing faults or variations in pixel voltage levels based on temperature or exposure. The Bad pixel correction module removes defective pixels.
  • Gain Control: The Gain control module improves the overall brightness of the image.
  • Demosaicing: The demosaic module reconstructs RGB pixels from the input Bayer image (RGGB,BGGR,RGBG,GRGB).
  • Auto white balance: The AWB module improves color balance of the image by using image statistics.
  • Colorcorrection matrix: corrects color suitable for display or video system.
  • Global tone mapping: Reduces the dynamic range from higher range to display range using tone mapping.
  • Gamma correction: Gamma correction improves the overall brightness of image.
  • Color space conversion : Converting RGB image to YUV422(YUYV) image for HDMI display purpose.RGB2YUYV converts the RGB image into Y channel for every pixel and U and V for alternate pixels.

isp-gtm

Current design example demonstrates how to use ISP functions in a pipeline.

You can dynamically configure the following parameters to the pipeline.

Table 241 Runtime Parameters for the Pipeline
Parameter Description
rgain To configure gain value for the red channel.
bgain To configure gain value for the blue channel.
gamma_lut Lookup table for gamma values.first 256 will be R, next 256 values are G gamma and last 256 values are B values
mode_reg Flag to enable/disable AWB algorithm
pawb %top and %bottom pixels are ignored while computing min and max to improve quality.
rows The number of rows in the image or height of the image.
cols The number of columns in the image or width of the image.
c1 To retain the details in bright area using, c1 in the tone mapping.
c2 Efficiency factor, ranges from 0.5 to 1 based on output device dynamic range.

You can also use the following compile-time parameters to the pipeline.

Table 242 Compile-Time Parameters for the Pipeline
Parameter Description
XF_HEIGHT Maximum height of input and output image
XF_WIDTH Maximum width of input and output image (Must be a multiple of NPC)
XF_BAYER_PATTERN The Bayer format of the RAW input image. supported formats are RGGB,BGGR,GBRG,GRBG.
XF_SRC_T Input pixel type,Supported pixel widths are 8,10,12,16

The following example demonstrates the ISP pipeline with the above list of functions.

         void ISPPipeline_accel(ap_uint<INPUT_PTR_WIDTH>* img_inp,
                         ap_uint<OUTPUT_PTR_WIDTH>* img_out,
                         int height,
                         int width,
                         uint16_t rgain,
                         uint16_t bgain,
                         unsigned char gamma_lut[256 * 3],
                         unsigned char mode_reg,
                         uint16_t pawb,
     float c1,
     float c2) {

         #pragma HLS INTERFACE m_axi     port=img_inp  offset=slave bundle=gmem1
         #pragma HLS INTERFACE m_axi     port=img_out  offset=slave bundle=gmem2

         #pragma HLS ARRAY_PARTITION variable=hist0_awb complete dim=1
         #pragma HLS ARRAY_PARTITION variable=hist1_awb complete dim=1

                         if (!flag) {
                                   ISPpipeline(img_inp, img_out, height, width, hist0_awb, hist1_awb, igain_0, igain_1, rgain, bgain, gamma_lut,
                                                           mode_reg, pawb, mean2, mean1, L_max2, L_max1, L_min2, L_min1, c1, c2);
                                   flag = 1;

                         } else {
                                   ISPpipeline(img_inp, img_out, height, width, hist1_awb, hist0_awb, igain_1, igain_0, rgain, bgain, gamma_lut,
                                                           mode_reg, pawb, mean1, mean2, L_max1, L_max2, L_min1, L_min2, c1, c2);
                                   flag = 0;
                         }
                         }

         void ISPpipeline(ap_uint<INPUT_PTR_WIDTH>* img_inp,
                                 ap_uint<OUTPUT_PTR_WIDTH>* img_out,
                                 unsigned short height,
                                 unsigned short width,
                                 uint32_t hist0[3][HIST_SIZE],
                                 uint32_t hist1[3][HIST_SIZE],
                                 int gain0[3],
                                 int gain1[3],
                                 uint16_t rgain,
                                 uint16_t bgain,
                                 unsigned char gamma_lut[256 * 3],
                                 unsigned char mode_reg,
                                 uint16_t pawb,
         ap_ufixed<16, 4>& mean1,
         ap_ufixed<16, 4>& mean2,
         ap_ufixed<16, 4>& L_max1,
         ap_ufixed<16, 4>& L_max2,
         ap_ufixed<16, 4>& L_min1,
         ap_ufixed<16, 4>& L_min2,
         float c1,
         float c2) {

                 #pragma HLS INLINE OFF

                         xf::cv::Mat<XF_SRC_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_IN_0> imgInput1(height, width);
                         xf::cv::Mat<XF_SRC_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_IN_1> imgInput2(height, width);
                         xf::cv::Mat<XF_SRC_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_IN_2> bpc_out(height, width);
                         xf::cv::Mat<XF_SRC_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_IN_3> gain_out(height, width);
                         xf::cv::Mat<XF_DST_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_0> demosaic_out(height, width);
                         xf::cv::Mat<XF_DST_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_1> impop(height, width);
                         xf::cv::Mat<XF_DST_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_2> ltm_in(height, width);
                         xf::cv::Mat<XF_DST_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_3> lsc_out(height, width);
                         xf::cv::Mat<XF_LTM_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_4> _dst(height, width);
                         xf::cv::Mat<XF_LTM_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_5> aecin(height, width);
                         xf::cv::Mat<XF_16UC1, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_6> _imgOutput(height, width);


                 #pragma HLS DATAFLOW

                         const int Q_VAL = 1 << (XF_DTPIXELDEPTH(XF_SRC_T, XF_NPPC));
                         float thresh = (float)pawb / 256;
                         float inputMax = (1 << (XF_DTPIXELDEPTH(XF_SRC_T, XF_NPPC))) - 1; // 65535.0f;
                         float mul_fact = (inputMax / (inputMax - BLACK_LEVEL));
unsigned int blc_config_1 = (int)(mul_fact * 65536); // mul_fact int Q16_16 format
unsigned int blc_config_2 = BLACK_LEVEL;

                         xf::cv::Array2xfMat<INPUT_PTR_WIDTH, XF_SRC_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_IN_0>(img_inp, imgInput1);
                         xf::cv::blackLevelCorrection<XF_SRC_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, 16, 15, 1, XF_CV_DEPTH_IN_0, XF_CV_DEPTH_IN_1>(imgInput1, imgInput2, blc_config_2,blc_config_1);
                         xf::cv::gaincontrol<XF_BAYER_PATTERN, XF_SRC_T, XF_HEIGHT, XF_WIDTH, XF_NPPCC, XF_CV_DEPTH_IN_1,>(imgInput2, gain_out, rgain, bgain);
                         xf::cv::demosaicing<XF_BAYER_PATTERN, XF_SRC_T, XF_DST_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, 0, XF_CV_DEPTH_IN_3, XF_CV_DEPTH_OUT_0>(gain_out, demosaic_out);
                         function_awb<XF_DST_T, XF_DST_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_0, XF_CV_DEPTH_OUT_2>(demosaic_out, ltm_in, hist0, hist1, gain0, gain1,height, width, mode_reg, thresh);
                         xf::cv::colorcorrectionmatrix<XF_CCM_TYPE, XF_DST_T, XF_DST_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_2, XF_CV_DEPTH_OUT_3>(ltm_in, lsc_out);

                         if (XF_DST_T == XF_8UC3) {
                                 fifo_copy<XF_DST_T, XF_LTM_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_3, XF_CV_DEPTH_OUT_5>(lsc_out, aecin, height, width);
                         } else {
                                  xf::cv::gtm<XF_DST_T, XF_LTM_T, XF_SRC_T, SIN_CHANNEL_TYPE, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_3, XF_CV_DEPTH_OUT_5>(
          lsc_out, aecin, mean1, mean2, L_max1, L_max2, L_min1, L_min2, c1, c2, height, width);
                         }
                         xf::cv::gammacorrection<XF_LTM_T, XF_LTM_T, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_5, XF_CV_DEPTH_OUT_4>(aecin, _dst, gamma_lut);
                         xf::cv::rgb2yuyv<XF_LTM_T, XF_16UC1, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_4, XF_CV_DEPTH_OUT_6>(_dst, _imgOutput);
                         xf::cv::xfMat2Array<OUTPUT_PTR_WIDTH, XF_16UC1, XF_HEIGHT, XF_WIDTH, XF_NPPC, XF_CV_DEPTH_OUT_6>(_imgOutput, img_out);
                 }