Exporting an Inference Graph - 3.0 English

Vitis AI Optimizer User Guide (UG1333)

Document ID
UG1333
Release Date
2023-01-12
Version
3.0 English

TensorFlow Model

First, build a TensorFlow graph for training and evaluation. Each part must be written in a separate script. If you have trained a baseline model before and you have the training code, then you only need to prepare the code for evaluation.

The evaluation script must contain a function named model_fn that creates all the needed nodes from input to output. The function should return a dictionary that maps the names of output nodes to their operations or a tf.estimator.Estimator. For example, if your network is an image classifier, the returned dictionary usually includes operations to calculate top-1 and top-5 accuracy as shown in the following snippet:

def model_fn():
  # graph definition
  # ……
return {
      'top-1': slim.metrics.streaming_accuracy(predictions, labels),
      'top-5': slim.metrics.streaming_recall_at_k(logits, org_labels, 5)
  }

Or, if you use the TensorFlow Estimator API to train and evaluate your network, your model_fn function must return an instance of the tf.estimator. At the same time, you must also provide a function called eval_input_fn, which the Estimator uses to get the data used in the evaluation.

def cnn_model_fn(features, labels, mode):
  # assemble the graph here
…
eval_metric_ops = {
      "accuracy": tf.metrics.accuracy(
          labels=labels, predictions=predictions["classes"])}
  return tf.estimator.EstimatorSpec(
      mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)

def model_fn():
  return tf.estimator.Estimator(
      model_fn=cnn_model_fn, model_dir="./models/train/")

mnist = tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images # Returns np.array
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images # Returns np.array
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)

def eval_input_fn():
  return tf.estimator.inputs.numpy_input_fn(
      x={"x": eval_data},
      y=eval_labels,
      num_epochs=1,
      shuffle=False)

You must also include code that can be used to export an inference GraphDef file and evaluate network performance during pruning.

To export a GraphDef proto file, use the following code:

import tensorflow as tf
from google.protobuf import text_format
from tensorflow.python.platform import gfile

with tf.Graph().as_default() as graph:
# your graph definition here
# ……
    graph_def = graph.as_graph_def()
    with gfile.GFile(‘inference_graph.pbtxt’, 'w') as f:
      f.write(text_format.MessageToString(graph_def))

Keras Model

For the Keras model, there is no explicit graph definition. Get a GraphDef object first and then export it. An example of tf.keras predefined ResNet50 is given here:

import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.python.framework import graph_util

tf.keras.backend.set_learning_phase(0)
model = tf.keras.applications.ResNet50(weights=None,
    include_top=True,
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000)
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy())
graph_def = K.get_session().graph.as_graph_def()

# "probs/Softmax": Output node of ResNet50 graph.
graph_def = graph_util.extract_sub_graph(graph_def, ["probs/Softmax"])
tf.train.write_graph(graph_def,
    "./",
    "inference_graph.pbtxt",
    as_text=True)