Performance metrics for the XilSEM library are derived from silicon specifications and direct measurement and are for budgetary purposes only. Actual performance might vary.
Device and Conditions | Initialization | Complete Scan Time | Correctable ECC Error Handling | Uncorrectable CRC Error Handling | Other Uncorrectable Error Handling |
---|---|---|---|---|---|
XCVC1902
|
SW ECC: 18.1 ms HW ECC: 36.2 ms |
13.6 ms (with 149682 CRAM frames) | 55 μs | 16 μs | 49 μs |
XCVM1802
|
SW ECC: 18.1 ms HW ECC: 36.2 ms |
13.6 ms (with 149682 CRAM frames) | 55 μs | 16 μs | 49 μs |
Device and Conditions | Initialization | Complete Scan Time | Uncorrectable SHA Error Handling | Other Uncorrectable Error Handling |
---|---|---|---|---|
XCVC1902
|
SW SHA: 13.2 ms HW SHA: 13.2 ms |
13.3 ms (with 900+ NPI slaves) | 12.47 ms | 342.8 s (DMA to SHA transfer timeout) |
XCVM1802
|
SW SHA: 14.7 ms HW SHA: 14.7 ms |
14.7 ms (with 900+ NPI slaves) | 13.7 ms | 353.5 s (DMA to SHA transfer timeout) |
Device and Conditions (XCVC1902) | CRAM Scan Frequency | Initialization | Complete Scan Time (Total Frames: 149682) | Correctable ECC Error Handling | Uncorrectable CRC Error Handling | Other Uncorrectable Error Handling |
---|---|---|---|---|---|---|
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 3 |
399.96 MHz |
HWECC: 27.044 ms SWECC: 13.619 ms |
13.84 ms | 59 μs | 16 μs | 44 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 4 |
299.96 MHz |
HWECC: 36.024 ms SWECC: 18.145 ms |
18.46 ms | 63 μs | 16 μs | 48 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 5 |
239.96 MHz |
HWECC: 45.022 ms SWECC: 22.591 ms |
23.08 ms | 68 μs | 17 μs | 50 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 6 |
199.98 MHz |
HWECC: 53.672 ms SWECC: 22.087 ms |
27.69 ms | 70 μs | 18 μs | 53 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 7 |
171.41 MHz |
HWECC: 63.078 ms SWECC: 31.845 ms |
32.3 ms | 75 μs | 19 μs | 57 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 8 |
149.98 MHz |
HWECC: 72.117 ms SWECC: 36.378 ms |
36.92 ms | 79 μs | 19 μs | 59 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 9 |
133.32 MHz |
HW ECC: 81.276 ms SWECC: 40.918 ms |
41.54 ms | 83 μs | 20 μs | 63 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 10 |
119.98 MHz |
HWECC: 90.203 ms SWECC: 45.473 ms |
46.15 ms | 87 μs | 21 μs | 66 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 11 |
109.08 MHz |
HWECC: 99.289 ms SWECC: 50.033 ms |
50.77 ms | 89 μs | 22 μs | 68 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 12 |
99.99 MHz |
HWECC: 108.278 ms SWECC: 54.536 ms |
55.38 ms | 95 μs | 22 μs | 72 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 13 |
92.29 MHz |
HWECC: 117.260 ms SWECC: 59.059 ms |
60.00 ms | 97 μs | 23 μs | 73 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 14 |
85.7 MHz |
HWECC: 125.280 ms SWECC: 63.617 ms |
64.61 ms | 101 μs | 24 μs | 78 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 15 |
79.99 MHz |
HWECC: 135.362 ms SWECC: 68.207 ms |
69.23 ms | 108 μs | 25 μs | 81 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 16 |
74.99 MHz |
HWECC: 143.257 ms SWECC: 72.739 ms |
73.85 ms | 109 μs | 25 μs | 81 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 17 |
70.58 MHz |
HWECC: 153.441 ms SWECC: 77.297 ms |
78.46 ms | 112 μs | 23 μs | 85 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 18 |
66.66 MHz |
HWECC: 162.451 ms SWECC: 81.809 ms |
83.08 ms | 118 μs | 27 μs | 89 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 19 |
63.15 MHz |
HWECC: 169.972 ms SWECC: 86.382 ms |
87.69 ms | 122 μs | 28 μs | 93 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 20 |
59.99 MHz |
HWECC: 178.952 ms SWECC: 90.844 ms |
92.31 ms | 127 μs | 28 μs | 96 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 21 |
57.13 MHz |
HWECC: 189.504 ms SWECC: 95.403 ms |
96.92 ms | 129 μs | 30 μs | 98 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 25 |
47.99 MHz |
HWECC: 226.884 ms SWECC: 113.603 ms |
115.39 ms | 147 μs | 33 μs | 111 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 30 |
39.99 MHz |
HWECC: 268.404 ms SWECC: 136.369 ms |
138.469 ms | 170 μs | 37 μs | 129 μs |
PMC = 320 MHz FBDIV = 72 Input_clock = 33.33 MHz CLKOUTDIV = 2 DIVISOR0 = 32 |
37.49 MHz |
HWECC: 286.474 ms SWECC: 145.374 ms |
147.7 ms | 172 μs | 38 μs | 130 μs |
Error detection latency is the major component of the total error mitigation latency. Error detection latency is a function of the device size and the underlying clock signals driving the processes involved, as these determine the Complete Scan time. It is also a function of the type of error and the relative position of the error with respect to the position of the scan process, at the time the error occurs. The error detection latency can be bounded as follows:
- Maximum error detection latency for detection by ECC is one Complete Scan
Time
- This represents a highly unlikely case when an error at a given location occurs directly “behind” the scan process.
- It will take one Complete Scan Time for the scan process to return to the error location at which time it will detect it.
- Maximum error detection latency for detection by CRC or SHA is 2.0 × Complete
Scan Time
- This represents an extremely unlikely case when an error occurs directly “behind” the scan process and is located at the scan start location (where the checksum accumulation begins at each scan).
- It will take one Complete Scan Time for the scan process to complete the current checksum accumulation (which will pass) and then a second Complete Scan Time to complete a checksum accumulation which includes the error (which will fail).
When a CFRAME error is detected, a task is added to PLM scheduler for error validation, correction and notification. The time for correction and notification depends on other requests which PLM has already been processing. The time also depends on the secure data size and secure operation. The following table lists the timing for different secure operations and power management tasks.
Example PLM Requests/Tasks1 | Processing Time (Approximate) |
---|---|
Optional NPI Scan (varies by resource utilization) | 15 ms |
Secure Data Request Authentication (RSA) Xsecure_RsaPublicEncrypt_64bit |
1.87 ms |
Secure Data Request Authentication (RSA) Xsecure_RsaPrivateDecrypt_64bit |
91.13 ms |
Secure Data Request Authentication
(ECDSA-P384) Xsecure_EllipticVerifySign_64bit |
6.31 ms |
Secure Data Request Authentication
(ECDSA-P521) Xsecure_EllipticVerifySign_64bit |
14.56 ms |
Secure Data Request, SHA, 100 Kb (varies by size) | 0.17 ms |
Secure Data Request, AES, 100 Kb (varies by size) | 0.77 ms |
Power Management Requests (estimated) | 1 ms |