Function and Loop Pipelining - 2022.1 English

Vitis High-Level Synthesis User Guide (UG1399)

Document ID
UG1399
Release Date
2022-06-07
Version
2022.1 English

Pipelining allows operations to happen concurrently: each execution step does not have to complete all operations before it begins the next operation. Pipelining is applied to functions and loops. The throughput improvements in function pipelining are shown in the following figure.

Figure 1. Function Pipelining Behavior

Without pipelining, the function in the above example reads an input every 3 clock cycles and outputs a value after 2 clock cycles. The function has an initiation interval (II) of 3 and a latency of 3. With pipelining, for this example, a new input is read every cycle (II=1) with no change to the output latency.

Loop pipelining allows the operations in a loop to be implemented in an overlapping manner. In the following figure, (A) shows the default sequential operation where there are 3 clock cycles between each input read (II=3), and it requires 8 clock cycles before the last output write is performed.

In the pipelined version of the loop shown in (B), a new input sample is read every cycle (II=1) and the final output is written after only 4 clock cycles: substantially improving both the II and latency while using the same hardware resources.

Figure 2. Loop Pipelining

Functions or loops are pipelined using the PIPELINE directive. The directive is specified in the region that constitutes the function or loop body. The initiation interval defaults to 1 if not specified but may be explicitly specified. Refer to Vitis-HLS-Introductory-Examples/Pipelining on Github for examples of these concepts.

Pipelining is applied only to the specified region and not to the hierarchy below. However, all loops in the hierarchy below are automatically unrolled. Any sub-functions in the hierarchy below the specified function must be pipelined individually. If the sub-functions are pipelined, the pipelined functions above it can take advantage of the pipeline performance. Conversely, any sub-function below the pipelined top-level function that is not pipelined might be the limiting factor in the performance of the pipeline.

There is a difference in how pipelined functions and loops behave.

  • In the case of functions, the pipeline runs forever and never ends.
  • In the case of loops, the pipeline executes until all iterations of the loop are completed.

This difference in behavior is summarized in the following figure.

Figure 3. Function and Loop Pipelining Behavior

The difference in behavior impacts how inputs and outputs to the pipeline are processed. As seen in the figure above, a pipelined function will continuously read new inputs and write new outputs. By contrast, because a loop must first finish all operations in the loop before starting the next loop, a pipelined loop causes a “bubble” in the data stream; that is, a point when no new inputs are read as the loop completes the execution of the final iterations, and a point when no new outputs are written as the loop starts new loop iterations.