Starting Pruning Loop - 2.5 English

Vitis AI Optimizer User Guide (UG1333)

Document ID
Release Date
2.5 English

Once the ana command has executed successfully, you can start pruning the model. The command prune is very similar to command ana, requiring the same configuration file:

vai_p_tensorflow \
  --action=prune \
  --input_graph=inference_graph.pbtxt \
  --input_ckpt=model.ckpt \
  --output_graph=sparse_graph.pbtxt \
  --output_ckpt=sparse.ckpt \
  --workspace=/home/deephi/tf_models/research/slim \
  --sparsity=0.1 \
  --exclude="conv node names that excluded from pruning" \
  --output_nodes="output node names of the network"

There is one new argument in this command:

The sparsity of network after pruning. It has a value between 0 and 1. The larger the value, the sparser the model is after pruning.

After the prune command executes, the vai_p_tensorflow outputs FLOPs of network before and after pruning.