Baseline Model
VGG is a network for large-scale image recognition. Refer to https://arxiv.org/abs/1409.1556 for the architecture of the VGG16.
Creating a Configuration File
Create a file named config.prototxt:
workspace: "examples/decent_p/"
gpu: "0,1,2,3"
test_iter: 100
acc_name: "top-1"
model: "examples/decent_p/vgg.prototxt"
weights: "examples/decent_p/vgg.caffemodel"
solver: "examples/decent_p/solver.prototxt"
rate: 0.1
pruner {
method: REGULAR
}
Performing Model Analysis
$ ./vai_p_caffe ana –config config.prototxt
Pruning the Model
$ ./vai_p_caffe prune –config config.prototxt
Fine-tuning the Pruned Model
You can use the following solver settings to perform fine-tuning:
net: "vgg16/train_val.prototxt"
test_iter: 1250
test_interval: 1000
test_initialization: true
display: 100
average_loss: 100
base_lr: 0.004
lr_policy: "poly"
power: 1
gamma: 0.1
max_iter: 500000
momentum: 0.9
weight_decay: 0.0001
snapshot: 1000
snapshot_prefix: "vgg16/snapshot/res"
solver_mode: GPU
iter_size: 1
Use the following command to start fine-tuning:
$ ./vai_p_caffe finetune -config config.prototxt
Estimated time required: about 70 hours for 30 epochs using training set of ImageNet (ILSVRC2012) (1.2 million images, 4 x NVIDIA Tesla V100).
Getting Final Output
After a few pruning iterations, a pruned model with only 33% of required operations relative to the baseline is obtained.
To finalize the model, run the following:
$ ./vai_p_caffe transform –model baseline.prototxt –weights finetuned_model.caffemodel -output
final.caffemodel
Pruning Results
- Dataset
- ImageNet (ILSVRC2012)
- Input Size
- 224 x 224
- GPU Platform
- 4 x NVIDIA Tesla V100
- FLOPs
- 30G
- #Parameters
- 24M
Round | FLOPs | Parameters | Top-1/Top-5 Accuracy |
---|---|---|---|
0 | 100% | 100% | 0.7096/0.8984 |
1 | 50% | 57.3% | 0.7020/0.8970 |
2 | 9.7% | 35.8% | 0.6912/0.8913 |