Here, a simple MNIST convnet from the Keras vision example is used.
model = keras.Sequential([
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(), layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),
])