This section contains information regarding the features and updates of the Vitis™ AI Library 1.4 release.
Key Features And Enhancements
This Vitis AI Library release includes the following key features and enhancements:
- New Board Support
- SoM Series: KV260 is supported in this release.
- New DPU Support
-
Enable new DPU target DPUCVDX8G designed for VCK190.
- New Model Libraries
- The following new model libraries are supported.
- New Model Support
-
- Added ten new PyTorch models
- Added five new TensorFlow models, including one TensorFlow2 model.
- Added one new Caffe model
- New Deploy APIs Support
-
graph_runner is introduced for deploying model.
- New Tool Support
-
xdputil is introduced for the dpu and xmodel debug.
Changes
- None.
Compatibility
The Vitis™ AI Library 1.4 is tested with the following images.
- xilinx-zcu102-dpu-v2021.1-v1.4.0.img.gz
- xilinx-zcu104-dpu-v2021.1-v1.4.0.img.gz
- xilinx-kv260-dpu-v2020.2-v1.4.0.img.gz
- xilinx-vck190-dpu-v2020.2-v1.4.0.img.gz
Model Support
The following models are supported by this version of the Vitis™ AI Library.
| No. | Neural Network | ZCU102/ ZCU104/ KV260 |
VCK190 | U50/U50LV/U280-DPUCAHX8H | U50/U50LV/U280-DPUCAHX8L | VCK5000-DPUCVDX8H | Application |
|---|---|---|---|---|---|---|---|
| 1 | inception_resnet_v2_tf | Y | Y | Y | Y | N/A | Image Classification |
| 2 | inception_v1_tf | Y | Y | Y | Y | Y | |
| 3 | inception_v3_tf | Y | Y | Y | Y | N/A | |
| 4 | inception_v4_2016_09_09_tf | Y | Y | Y | Y | N/A | |
| 5 | mobilenet_v1_0_25_128_tf | Y | N/A | N/A | N/A | N/A | |
| 6 | mobilenet_v1_0_5_160_tf | Y | N/A | N/A | Y | N/A | |
| 7 | mobilenet_v1_1_0_224_tf | Y | N/A | N/A | Y | N/A | |
| 8 | mobilenet_v2_1_0_224_tf | Y | N/A | N/A | Y | N/A | |
| 9 | mobilenet_v2_1_4_224_tf | Y | N/A | N/A | Y | N/A | |
| 10 | resnet_v1_101_tf | Y | Y | Y | Y | Y | |
| 11 | resnet_v1_152_tf | Y | Y | Y | Y | Y | |
| 12 | resnet_v1_50_tf | Y | Y | Y | Y | Y | |
| 13 | vgg_16_tf | Y | Y | Y | Y | N/A | |
| 14 | vgg_19_tf | Y | Y | Y | Y | N/A | |
| 15 | ssd_mobilenet_v1_coco_tf | Y | N/A | N/A | Y | N/A | Object Detection |
| 16 | ssd_mobilenet_v2_coco_tf | Y | N/A | N/A | Y | N/A | |
| 17 | ssd_resnet_50_fpn_coco_tf | Y | Y | Y | N/A | N/A | |
| 18 | yolov3_voc_tf | Y | Y | Y | N/A | Y | |
| 19 | mlperf_ssd_resnet34_tf | Y | Y | Y | Y | N/A | |
| 20 | resnet50 | Y | Y | Y | Y | Y | Image Classification |
| 21 | resnet18 | Y | Y | Y | Y | Y | |
| 22 | inception_v1 | Y | Y | Y | Y | Y | |
| 23 | inception_v2 | Y | Y | Y | Y | N/A | |
| 24 | inception_v3 | Y | Y | Y | Y | N/A | |
| 25 | inception_v4 | Y | Y | Y | Y | N/A | |
| 26 | mobilenet_v2 | Y | N/A | N/A | Y | N/A | |
| 27 | squeezenet | Y | Y | Y | Y | Y | |
| 28 | ssd_pedestrian_pruned_0_97 | Y | Y | Y | Y | N/A | ADAS Pedestrian Detection |
| 29 | ssd_traffic_pruned_0_9 | Y | Y | Y | Y | Y | Traffic Detection |
| 30 | ssd_adas_pruned_0_95 | Y | Y | Y | Y | Y | ADAS Vehicle Detection |
| 31 | ssd_mobilenet_v2 | Y | N/A | N/A | Y | N/A | Object Detection |
| 32 | refinedet_pruned_0_8 | Y | Y | Y | Y | Y | |
| 33 | refinedet_pruned_0_92 | Y | Y | Y | Y | Y | |
| 34 | refinedet_pruned_0_96 | Y | Y | Y | Y | Y | |
| 35 | vpgnet_pruned_0_99 | Y | Y | Y | Y | Y | ADAS Lane Detection |
| 36 | fpn | Y | Y | Y | Y | Y | ADAS Segmentation |
| 37 | sp_net | Y | Y | Y | Y | Y | Pose Estimation |
| 38 | openpose_pruned_0_3 | Y | Y | Y | Y | Y | |
| 39 | densebox_320_320 | Y | Y | Y | N/A | Y | Face Detection |
| 40 | densebox_640_360 | Y | Y | Y | N/A | Y | |
| 41 | face_landmark | Y | Y | Y | Y | Y | Face Detection and Recognition |
| 42 | reid | Y | Y | Y | Y | Y | Object tracking |
| 43 | multi_task | Y | Y | Y | Y | Y | ADAS |
| 44 | yolov3_adas_pruned_0_9 | Y | Y | Y | N/A | Y | Object Detection |
| 45 | yolov3_voc | Y | Y | Y | N/A | Y | |
| 46 | yolov3_bdd | Y | Y | Y | N/A | Y | |
| 47 | yolov2_voc | Y | Y | Y | N/A | Y | |
| 48 | yolov2_voc_pruned_0_66 | Y | Y | Y | N/A | Y | |
| 49 | yolov2_voc_pruned_0_71 | Y | Y | Y | N/A | Y | |
| 50 | yolov2_voc_pruned_0_77 | Y | Y | Y | N/A | Y | |
| 51 | facerec_resnet20 | Y | Y | Y | Y | N/A | Face Recognition |
| 52 | facerec_resnet64 | Y | Y | Y | Y | N/A | |
| 53 | plate_detection | Y | Y | Y | Y | Y | Plate Recognition |
| 54 | plate_recognition | Y | Y | Y | N/A | N/A | |
| 55 | FPN_Res18_Medical_segmentation | Y | Y | Y | Y | Y | Medical Segmentation |
| 56 | refinedet_baseline | Y | Y | Y | Y | Y | Object Detection |
| 57 | resnet50_pt | Y | Y | Y | Y | Y | Image Classification |
| 58 | squeezenet_pt | Y | Y | Y | Y | Y | |
| 59 | inception_v3_pt | Y | Y | Y | Y | N/A | |
| 60 |
personreid-res50_pt |
Y | Y | Y | Y | N/A | Object Tracking |
| 61 |
facereid-large_pt |
Y | Y | Y | N/A | N/A | |
| 62 |
facereid-small_pt |
Y | Y | Y | Y | N/A | |
| 63 |
SemanticFPN_cityscapes_pt |
Y | Y | Y | Y | Y | Segmentation |
| 64 |
facerec-resnet20_mixed_pt |
Y | Y | Y | Y | N/A | Face Recognition |
| 65 | face-quality_pt | Y | Y | Y | Y | Y | |
| 66 | MT-resnet18_mixed_pt | Y | N/A | N/A | N/A | N/A | ADAS |
| 67 | salsanext_pt | Y | Y | Y | Y | Y | Point Cloud |
| 68 | pointpillars_kitti_12000_0_pt pointpillars_kitti_12000_1_pt |
Y | N/A | N/A | N/A | N/A | |
| 69 | unet_chaos-CT_pt | Y | Y | Y | N/A | Y | CT Segmentation |
| 70 | FPN-resnet18_covid19-seg_pt | Y | Y | Y | Y | Y | Covid-19 Segmentation |
| 71 | ENet_cityscapes_pt | Y | Y | Y | Y | Y | Segmentation |
| 72 | personreid-res18_pt | Y | Y | Y | N/A | N/A | Object Tracking |
| 73 | yolov4_leaky_spp_m | Y | Y | Y | N/A | N/A | Object Detection |
| 74 | hourglass-pe_mpii | Y | N/A | N/A | N/A | N/A | Pose Estimation |
| 75 | retinaface | Y | N/A | N/A | N/A | N/A | Face Detection |
| 76 | FPN-resnet18_Endov | Y | N/A | N/A | N/A | N/A | Robot Instrument Segmentation |
| 77 | tiny_yolov3_vmss | Y | Y | Y | N/A | Y | Object Detection |
| 78 | face-quality | Y | Y | Y | Y | N/A | Face Recognition |
| 79 | ssdlite_mobilenet_v2_coco_tf | Y | N/A | N/A | Y | N/A | Object Detection |
| 80 | ssd_inception_v2_coco_tf | Y | N/A | N/A | N/A | N/A | |
| 81 | MLPerf_resnet50_v1.5_tf | Y | Y | Y | Y | Y | Image Classification |
| 82 | mobilenet_edge_1_0_tf | Y | N/A | N/A | N/A | N/A | |
| 83 | mobilenet_edge_0_75_tf | Y | N/A | N/A | N/A | N/A | |
| 84 | refinedet_VOC_tf | Y | Y | Y | Y | Y | Object Detection |
| 85 | RefineDet-Medical_EDD_tf | Y | Y | Y | Y | Y | Medical Detection |
| 86 | resnet_v2_50_tf | Y | N/A | N/A | N/A | N/A | Image Classification |
| 87 | resnet_v2_101_tf | Y | N/A | N/A | N/A | N/A | |
| 88 | resnet_v2_152_tf | Y | N/A | N/A | N/A | N/A | |
| 89 | mobilenet_v2_cityscapes_tf | Y | N/A | N/A | N/A | N/A | Segmentation |
| 90 | inception_v2_tf | Y | N/A | N/A | Y | N/A | Image Classification |
| 91 | resnet50_tf2 | Y | Y | Y | Y | Y | |
| 92 | mobilenet_1_0_224_tf2 | Y | N/A | N/A | Y | N/A | |
| 93 | inception_v3_tf2 | Y | Y | Y | Y | N/A | |
| 94 | medical_seg_cell_tf2 | Y | Y | Y | Y | Y | Medical Segmentation |
| 95 | semantic_seg_citys_tf2 | Y | Y | Y | Y | N/A | Segmentation |
| 96 | efficientNet-edgetpu-S_tf | Y | Y | N/A | N/A | N/A | Image Classification |
| 97 | efficientNet-edgetpu-M_tf | Y | Y | N/A | N/A | N/A | |
| 98 | efficientNet-edgetpu-L_tf | Y | Y | N/A | N/A | N/A | |
| 99 | SemanticFPN_Mobilenetv2_pt | Y | Y | N/A | Y | N/A | Segmentation |
| 100 | pointpillars_nuscenes_40000_64_0_pt pointpillars_nuscenes_40000_64_1_pt |
Y | Y | N/A | N/A | N/A | 3D object detection |
| 101 | pointpainting_nuscenes_40000_64_0_pt pointpainting_nuscenes_40000_64_1_pt |
Y | Y | N/A | N/A | N/A | 2D semantic segmentation and 3D object detection |
| 102 | salsanext_v2_pt | Y | Y | Y | N/A | N/A | 3D Segmentation |
| 103 | centerpoint_0_pt centerpoint_1_pt |
Y | Y | N/A | N/A | N/A | 4D radar detection |
| 104 | multi_task_v3_pt | Y | Y | N/A | N/A | N/A | ADAS |
| 105 | FADNet_0_pt FADNet_1_pt FADNet_2_pt |
Y | Y | N/A | N/A | N/A | Depth Estimation |
| 106 | rcan_pruned_tf | Y | Y | N/A | Y | N/A | Super Resolution |
| 107 | efficientnet_tf | N/A | Y | N/A | N/A | N/A | Classification |
| 108 | yolov4_leaky_spp_m_pruned_0_36 | Y | Y | Y | N/A | N/A | Object Detection |
| 109 | pmg_pt | Y | Y | Y | N/A | N/A | Brand Recognition |
| 110 | bbc_pt | Y | Y | N/A | N/A | N/A | Bayesian Crowd Counting |
| 111 | SA_gate_pt | N/A | Y | N/A | N/A | N/A | Indoor Segmentation |
|
|||||||
Device Support
The following platforms and evaluation boards (EVB) are supported by the Vitis™ AI Library 1.4.
| Platform | EVB | Version |
|---|---|---|
| Zynq UltraScale+ MPSoC ZU9EG | Xilinx ZCU102 | 1.1 |
| Zynq® UltraScale+™ MPSoC ZU7EV | Xilinx ZCU104 | 1.0 |
| Zynq UltraScale+ MPSoC | Xilinx Kria KV260 | 1.0 |
| Versal AI Core series VC1902 | Xilinx VCK190 | ES1 |
| Accelerator Cards |
|---|
| Xilinx Alveo U50 Data Center accelerator card |
| Xilinx Alveo U50LV Data Center accelerator card |
| Xilinx Alveo U200 Data Center accelerator card |
| Xilinx Alveo U250 Data Center accelerator card |
| Xilinx Alveo U280 Data Center accelerator card |
| Versal AI Core series VCK5000 Data Center development kit |
Limitations
- Some neural networks with MobileNet as the backbone are not supported on the Alveo U50, U50LV, and U280 accelerator cards.
- Due to limitations of the Docker environment, Multi-task demos cannot run on the DRM mode on Cloud boards.